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SUMMARY

- A simple constitutive law is proposed for the description of a ceramic

composite which undergoes stress induced martensitic transformation. This law

is used in finite element calculations to investigate the shear effect on the

transformation zone near a crack tip. A formula describing the stress

intensity factor change due to the shear contribution of the transformation is

given. Significant loss of toughness is observed in the case of a stationary

crack and is attributed entirely to the shear component of the transfor-

mation. On the contrary, the dilatant part brings about no change. As the

crack grows, the wake of the transformed material left behind the crack

constitutes a source of toughening. This toughening is due to both dilatancy

and shear in the phase change and rises to a maximum level just after a

propagation comparable with the zone height. Finally, it is shown that the

shear component can be important when prediction of the fracture toughness of

the transformation toughened ceramics are made.
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1. INTRODUCTION

Transformation toughening is one of the mechanisms available to overcome

the inherent brittleness of ceramics. It is a phenomenon applicable to

ceramic matrices in which Zirconia (Zr02 ) and perhaps some other materials can

be incorporated. To date it has been studied quite thoroughly [1-131.

An optimally-fabricated 1131 partially stabilized zirconia (PSZ) is a

two-phase ceramic. Its microstructure [5] at room temperature consists of: a

cubic matrix which is a high solute content Zirconia 'alloy' containing one of

the stabilizers MgO CaO, Y203 or any of the rare earth oxides: and fine

coherent metastable tetragonal precipitates of low solute content Zirconia

phase inside the cubic matrix. The stress induced martensitic transformation

of those metastably retained tetragonal particles to monoclinic symmetry in

the stress field of a crack tip is the mechanism responsible for the enhanced

toughness observed experimentally in PSZ. The phenomenon of transformation

toughening is also observed in the A1203 and Zr0 2 system. The pure tetrogonal

Zr0 2 particles are retained metastably in the A1203 matrix by pressure.

There are two methods of analysis with regard to the phenomenon of

toughening. The first incorporates the energy changes accompanying the

transformation. The second concerns the stress intensity factor (SIF) changes

that take place during transformation.

Quantitative analysis from a continuum mechanics viewpoint, based only on

the dilatational component of the transformation with regard to the SIF

reduction was done first by McMeeking and Evans [19] and Budiansky, Hutchinson

and Lambropoulos [201. The analysis of the latter workers is based on a

constitutive relation between the mean stress and the dilatation for the

composite ceramic. In both works mentioned, the predicted toughening is

comparable with the experimental data, however, it underestimates them.

O
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Recently, Lambropoulos [211 has suggested a promising constitutive law

for the composite including both parts of the transformation, dilatant and

shear. The treatment of the shear effect takes into consideration particle

,* size and orientation. The results predicted for spherical particles are quite

well in agreement with experimental observations but are based on a

. transformation zone size and shape estimated from the standard crack tip

singular elastic field. That is, he assumes that the zone shape is the same

as regions in the unperturbed elastic solution in which the transformation

criterion is met or exceeded. Changes in stress due to the transformation are

not addressed in detail.

In this paper, we shall study the shear effect's influence on the

enhanced toughness through numerical calculations by means of a simple stress-

strain relation for the composite. The model is based on a constitutive

relation along the lines introduced by Budiansky et al. [201 and the condition

for transformation is dominated by the dilatational component. When the

hydrostatic stress reaches a critical level, the transformation takes place.

This model is not entirely satisfactory as the shear effect is bound to

influence the critical state for transformation. However, we regard this

paper with the critical state determined solely by the hydrostatic stress as a

first step towards a complete theory. The analysis is carried out around the

crack tip of a long crack which is imbedded in a composite material rich in

tetragonal particles whose presence in the matrix is defined by a volume

concentration vf. As such, the composite can be modelled as a continuum of

transformable material.

In section 2 we discuss some aspects of the shear part of the

transformation which are helpful in comprehending the nature of the shear

strain that the transforming particles undergo. In section 3 we propose a
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constitutive law for the composite. In section 4 we derive a formula for the

SIF change due to the shear component of the transformation. Based on that

formula, we make first estimates of the shearing contribution to SIF change by

using the transformation zone derived from the unperturbed elastic solution

[19]. In section 5 we formulate the boundary value problem for the stationary

crack and solve it by means of the finite element method in section 6. As a

result the transformation zone shape and size are estimated. In section 7 the

estimated zone and the fracture toughness calculations for the stationary and

for the propagating crack are presented. As it has already been proven in the

past, the toughness increase is due to the transformed particles left in the

wake of the crack tip. In sections 8 and 9 the discussion associated with the

model results and the closure are presented respectively.

2. STRESS INDUCED TRANSFORMATION

The aim of this section is to introduce basic features of the stress

induced transformation so that the shear component can be understood. The

transformation is martensitic and has been discussed extensively elsewhere

[1,16,17,18]. It involves a change from tetragonal to monoclinic symmetry in

particles in the composite ceramic. In the situation of interest to us, the

Lrdnsformation is induced by critical conditions of stress. A component of

the transformation is a dilatation and if the particles were unconstrained

there would also be a substantial shear contribution. If we assume that the

process is driven by the reduction of free energy [1,7,13] then we deduce that

the shear strain component of the transformation would align itself to

maximize the work done by the loads applied to the particle (7,13]. In

addition, the critical state for transformation would arise just when the

applied loads are capable of delivering sufficient energy to the system to

... . . . . . . .. . . . . . . . * .......-. . ~ .*-2~**
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compensate for the increase in the internal energy [7,13). This implies a

transformation criterion involving some combination of hydrostatic and

deviatoric stress. This issue has been addressed by Lambropoulos [21J.

It has been observed that the situation is more complicated when the

transforming particles are constrained in the composite matrix [12). The

particles are capable of twinning or undergoing some similar mode of

deformation during transformation. The twins form in such a way that the

average shear strain after transformation can be quite small compared with the

potential unconstrdined shear transformation strain. In addition, the final

strain in the transformed particle differs because of the constraint of the

surrounding matrix. There is not yet a comprehensive theory that accounts for

transformation and twinning. However, it can be hypothesized that the

orientation of the net shear strain that results from transformation and

twinning will be aligned with the maximum shear stress applied by the matrix

to the particle. This will tend to maximize the external energy absorption

during transformation and suggests a critical state for the transformation

based on strain energy. Lambropoulos [21] has developed a constitutive law

for the constrained transformation along the above lines combining the effects

of hydrostatic and deviatoric stress and accounting for dilatational and shear

transformation.

In this paper we shall use a simpler law as a first step towards studying

the interactions of shear transformation with the crack tip. The process will

be considered to take place on a continuum scale and the description of the

constitutive law applies to the composite ceramic. The criterion for

transformation will be taken to be the achievement of a critical average

hydrostatic stress in the composite. This neglects the contribution made by

the shear component to the work absorbed during transformation. However, the



residual shear strains in constrained transformation particles are known to be

small and the shear strain in an unconstrained composite element would be

correspondingly small. The transformation will involve a deviatoric component

as well as a dilatational contribution. The deviatoric part of the

transformation strain for an unconstrained element of the composite ceramic

will be taken to be proportional to the dilatational component of the

unconstrained transformation. All calculations presented in this paper will

be for plane strain situations. In that case there is a fixed ratio between

the shear strain and the volumetric strain in the transformation. The

orientation of the shear strain will be taken as that of the maximum shear

stress when transformation commences (fig. 1). Once the transformation has

taken place this orientation will be locked in so that changes of direction of

the maximum shear stress will not cause rotation of the shear contribution of

the transformation.

Finally, the transformation will be supercritical in the terminology of

Budiansky et al. [201. That is, at critical state, the material transforms

completely without the existence of a partially transformed state. The

details of the constitutive law are given in the next section.

3. THE CONSTITUTIVE LAW

The transformation of the composite occurs due to the martensitic

transformation of the particles. It takes place when the macroscopic average

stress in the composite is such that

a = acr (1)
m m

0
kk

where am =-3 is the mean stress, acr is a critical value and Cij is

the macroscopic average stress tensor at a point in the composite.
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The unconstrained transformation strain of the composite is ciT which

is partly dilatational and partly deviatoric in general. It can be estimated

to be the volume fraction vf of particles in the composite times the

unconstrained transformation strain of the transforming particles less the

deviatoric strain nullified by twinning [20]. The supercriticality of the

transformation implies that there is no transformation as long as am < cr

and complete transformation occurs if a . c r . The transformation will bem m

assumed to be effectively irreversible in the conditions prevailing as

observed in experiment [19]. The amount of the deviatoric strain arising

during transformation is proportional to the amount of dilatation. We will

carry out calculations for a variety of values of this ratio. The principal

axes of the deviatoric strain will be taken to depend on the state of stress

at transformation as discussed below.

The stress which arises [221 in a constrained element of the composite is

T

ij Cjk (k1 - Ek) (2)

where Cjj is the final strain and cijkt is the tensor of linear elastic

moduli of the composite material. For an isotropic composite

CT = 2p (eij ei ) + B(Ekk - E k) (3)
ij ij k ii

where i is the shear modulus, B is the bulk modulus, eij = Eui - C Ekk ij

is the deviatoric strain, 6 ij is the Kronecker delta and eT is the

dilatational part of the unconstrained transformation of the composite (ET

TEkk).

The calculations we have carried out are for plane strain. In this case

E = 0 and we assume that e T = 0 as there are no macroscopic transversese szz

shear strains. As a consequence

.......... .............
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= v+ _T 2 T
0zz UV(%xx +a - i p(1 + v) T (4)

where v is the poisson's ratio. The deviatoric transformation strain can be

written as

T T
eT eT "T eT
e -e e cos2QXX yy 2 T xy 2

where Q is the angle between the x-axis and a principal axis of the

transformation shear. Thus, the transformation is determined by 3 parameters

ET, yT and 0. We will assume that Q is coincident with the angle to the

principal axes of shear stress in the macroscopic composite state of stress at

the instant of transformation as shown in fig. 1. Calculations are carried

out for a variety of ratios K - YT/CT.

4. ESTIMATES OF THE SHEARING EFFECT AT THE CRACK TIP

Before proceeding to somewhat rigorous numerical calculations, we shall

consider some approximate results for shearing transformation at the crack

tip. The shape of the zone of transformed material at the crack tip is

determined by the interaction of the stresses generated by the applied load

and those generated by constraints on the transformed zone. If we neglect the

latter, we can estimate the zone shape as the locus of points at critical

state in the unperturbed linear elastic solution at the crack tip. This

proves to be quite an accurate estimate of shape for the case of small scale

dilatant transformation [20). As we have approximated the critical state as

one that depends only on hydrostatic stress, the zone shape will be given by

the locus of points of equal hydrostatic stress. We will restrict ourselves

to small scale transformation, so that the stresses of interest are given by

the singular elastic stresses at the crack tip due to the applied load
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=j Afij (e) (5)

where KA is the stress intensity due to the applied loads causing tensile

opening (Mode I) of the tip, (r,e) are polar coordinates measured from the

crack tip and fij is a given function which can be found for example in the

article by Rice [24]. The shape that results for a stationary crack is shown

in fig. 2.

Consider now, the material which transforms inside the zone. If it were

not constrained by the material outside the zone, a certain change of shape

would result. Tractions can be applied to the perimeter of this region of

material to return it exactly to the shape of the zone prior to transfor-

mation. After the material is inserted into the crack tip location, the

tractions can be removed to give the final state. However, the forces

required to nullify the constraining tractions Tc will produce a change in

the SIF at the crack tip. It is this change of stress intensity AK which is

of interest.

As discussed by McMeeking and Evans [191 the change of stress intensity

is given by

AK = j Tc * h ds (6)
ST

where h is the weight function [251 whose form is stated in McMeeking and

Evans [19] and used with the assumption that ei is homogeneous in AT , the

transforming area which has perimeter ST. We shall consider now

transformations which are inhomogeneous C T (x). With the area AT removed

from constraint of the surrounding area, the displacements and strains [22]

that result will be us  and ES respectively due to transformation and self-

i j -.all.~ ~ l iKnni--l li -.l~ j ~ i .~ l' - . . . .. : :• .: -" . ,", . ,'
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sufficient in general to consider only the effect of very long wakes that

produce an asymptotic value for AK.

For X less than 1 the toughness enhancement is not as large as that

given by equation (18). In table 5 we present the greatest toughness enhance-

ments found for several X values and the amount of crack advance for which

they were obtained. This table shows that the toughness enhancement gets

larger when X gets larger. It should be mentioned that the values for AK

tend to certain asymptotic values as Aa/w + - but these are less important

than the maxima presented in table 5. Finally, we should mention the facL

that the results of table 5 fit the curve for v = 0.25 of figure 4. This

means that the results taken in section 4 and those after having solved the

boundary value problem of the stationary crack are the same.

Applications

Next, we proceed to see how the maximum toughness enhancement results

compare with the experimental data. We shall consider v = 0.3 even though

our shearing contribution results have been taken by considering v = 0.25.

Figure 4 indicates that no significant difference results. In the case of the

Al203 toughened Zirconia whose material and transformation parameters are

[211: E = 315 GPa, CT = 0.04, w = 10- 6 m, vf = 0.03 one has

i) with purely dilatant transformation

AK = - 1.19 Mpa Vm

ii) with both parts of the transformation and X = I

AK = - 1.89 MPa v/m

iii) Lambropoulos' result (both part of the transformation, spherical

particles and KIC= 5 MPa Vm)
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based on equation (16). Such "R curves" are those shown in figures 12 and 13

for X - 0 and X = I respectively. Observing those curves and the tables 2

through 4 we deduce that the wake of the transformed material left behind the

propagating crack is a source of fracture toughness enhancement. First,

figure 12 shows that the toughness enhancement found for X = 0 coincides

with that found by McMeeking and Evans [19]. this coincidence becomes more

pronounced for large values of crack advance.

The important result of this paper is the AKS  component that behaves as

for examaple figure 13 shows for X = 1. As mentioned previously, the crack

will start to propagate sooner than in the absence of transformation because

AK is initially positive due to AKS. As the crack grows, AK diminishes

and eventually becomes negative at about Aa/w = 0.1. This means that the

applied loads must be increased to sustain crack growth and in a stiff loading

system the crack will propagate stably under rising load. This will continue

until Aa/w is about 0.7 and the SIF change is then given by

(--v) AK 0.35. (23)

E T vf

This expression represents the toughness enhancement and is larger than that

given by equation (18). After this amount of crack growth, AK increases and

so if the loads are kept constant or increased, the applied K will exceed

KIC. Thereafter the propagation will become unstable. Thus the maximum

magnitude of AK represented by equation (23) is equivalent to the asymptotic

value of AK due to dilatation alone observed by McMeeking and Evans [19].

It is interesting to note that the asymptotic value of AK due to dilatation

plus shear is not the relevant quantity. The useful toughness enhancement is

due to the minimum in the curve for AK at Aa/w 0.7. Thus it may not be
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been extended to the cases when X * 0

In contrast with AKD, AKS  is not zero and it does depend on the value

of X. In fact, AKS increases as X increases. Equation (16) indicates

that the shearing effect results in fracture toughness reduction because AKS

is positive. This reduction for X = I is comparable to the fracture

toughness enhancement in the case of a purely dilatant transformation given by

equation (18) when the crack has advanced Aa = 5w . The AKS results in

table I can almost be reproduced by the equation (17) for the respective

values of X. This means that the transformed material and the shearing

contribution do not affect the features of the transformation zone as it is

found from the unperturbed elastic crack tip field. Therefore, the fact that

AKS is positive is a consequence of the nature of the equation (16). An

attempt to justify this may be made by regarding the range of the positive

contribution to the integral of equation (16). Since for the stationary crack
3e
0 -s4, the integral sign depends on the sign of the integrand sin(20).

Hence, it is positive when 0 < I and negative when 0 > - . Therefore, it
2 2

can be said that the positive contribution comes from a large sector and can

very likely override the negative contribution.

The consequence of the computed AKS  values would be that crack

propagation may take place sooner than when there is no transformation. This

is because AKS is positive for the stationary crack and KA can become

greater than KIc earlier than otherwise. However, this growth is likely to

be stable, a point which is elucidated in what follows.

Propagating crack

In order for the crack to advance quasi-statically it is required that

the applied loads KA be such that KA A KIC where KIC is given by

equation (16). Therefore, by knowing AK , we can produce an "R curve" [151

t , -" mi lak -S--S m (i1...- . 5 ,-. .. =.. , 5 _' . " . - S. . . . ' ' ' . -' - . _ '
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zones are developed inside a circle centered at the crack tip whose area is

less than 0.15% of the mesh. Indeed, these numbers fall within the

corresponding length range, set for small scale yielding condition in the

elastic-plastic fracture analysis by Rice and Tracey [23). In addition, the

fact that the displacements of the elements near the perimeter of the domain

(fig. 5) are the unperturbed elastic crack tip field displacements, ensures

the small scale condition too. In figure 9, it can be seen that the zone

taken numerically for X = 0 is almost identical with that used by McMeeking

and Evans [19] as predicted by Budiansky et al. [20). This means that the

transformed material does not affect the linear elastic crack tip field given

by equation (5). The same argument applies to the case when X - 1 (fig.

11). However, the shearing contribution affects the zone shape especially at

small angles of 0. It is also worth mentioning that the zone height w is

the same for all values of X as shown in table 1.

Consider now the SIF change AKD. It can be deduced from table I that

AKD = 0 if we take into account the numerical error involved in the

calculations. Therefore, for X > 0 no AKD is observed even though the

zone boundaries differ from that with X = 0. This independence of AKD from

X can be justified by observing equation (13). The sign of the integral

depends on the sign of the cos( ). The integral is positive for e < Y and

negative for e > ' . Thus, the positive contribution to the integral value

comes from a much smaller section than the sector of the negative

contribution. It is this wider ranging source of the negative effect which

dominates the integral value. Therefore, the larger range of r for small 0

when X deviates from zero cannot be cause of a significant disturbance of

the final result. This remark has already been made before [191, but only

within the frame of a purely dilatant transformation. The argument now has

"o.. -. i'''.i -'- -' -'.i. -. -. .. -. . .- . . -i - ..... ' .-. , - " ..- .. " " ii
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Propagating crack

The crack has been assumed to propagate quasi-statically under the

conditions mentioned in section 4. The SIF change calculations AKD and

AKS were carried out numerically for a given crack advance Aa. The formulae

(13) and (14) were used again. The results are shown in tables 2 through 4.

In figures 12 and 13 the changes AKD and AKS  are plotted against the crack

advance Aa for X - 0 and X 1 1 respectively. In table 5 the symptotic,

i.e. the maximum SIF change AK = AKD + AKS  is shown.

8. DISCUSSION

In this discussion of the results quoted in the previous section, we

shall focus mainly on how the shear component of the transformation influences

the fracture toughness behavior of the material. It should be borne in mind

T Tthat the shearing contribution is characLerized by the parameter X = y /c

Large values of X denote large transformation shear strains for a given

volumt: dilatation.

Stationary crack

It has been mentioned before that the dilatant part of the transformation

does not affect the material fracture toughness, i.e. AKD - 0. Furthermore,

Lambropoulos [211 based on a transformation zone derived from the unperturbed

linear elastic crack tip field, concluded that AKS = 0 too. Our analysis'

predictions are in accord with the above results only as far as AKD is

concerned. Table I shows that AKS is not zero. However, we have used a

different constitutive law from Lambropoulos.

Before discussing the nature of AKD and AKS we should emphasize that

the small scale transformation condition is satisfied. This is because the
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Stationary crack

The transformation zone for X - 0 is shown in fig. 8. There is no

shearing effect because YT . 0. The asterisks indicate the element

integration stations where the condition for transformation was met. The

transformed zone covers an area only 0.1% of the mesh. The nodal displace-

ments of the elements near the external boundary of the domain (fig. 5) are

identical within 3 significant figures to the linear elastic ones when

transformation does not take place. The periphery of the transformation zone

is shown in fig. 9. The curve denoted by the letter D is the periphery of the

transformation zone used by McMeeking and Evans [191. This last zone is given

by r =- 8_w cos ( ) where the height w has been taken to agree with the
3/3

height of the finite element zone.

The transformation zone for X = I is shown in fig. 10. The boundary of

the zone is shown in fig. 11 along with the zone used by McMeeking and Evans

as described before. The zones have the same height as the zone for X = 0.

However, its leading front appears to be elongated along the x axis as y - 0

compared to the other zone. As a result, an inflection point is observed.

The zone boundary to the left of this point tends to be concave whereas the

boundary to the right tends to be convex. It is worth noting that this

tendency for elongation increases with increasing values of X. This

observation has been confirmed by the appearance of the zone boundaries that

we generated for intermediate values of X.

The SIF change calculations were carried out numerically by using the

formulae (13) and (14) for the AKD and AKS  changes respectively. These

changes are shown in Table 1.
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where [C) is the linear elastic stress-strain matrix for plane strain, for the

composite, {T is the two-dimensional traction vector, {uN} is the nodal

displacements and {E T} is the element transformation strain vector given by

.*" 2(1+v) T T
3(-2v) sin2Q

"Er} 2(1+v) CT + YT sin2Q (22)

T
y cos2Q

m It is worth noting that the stiffness matrix [K] is independent of the

transformation since it involves only the elasticity tensor [C) and the

interpolation matrix [B]. The same is true for the vector {Fb} However,

the quantity {FT } depends on the transformation through {ET.

An iterative method was used to solve equations (21) as stated in section

5. All calculations were carried out for Poisson's ratio v - 0.25. Solutions

were obtained for X equal to 0, 0.25, 0.5, 0.75 and 1. Extremely rapid

convergence was achieved with 3 iterations when the computed displacements

were found to converge to within 3 significant figures.

7. RESULTS

In this section we shall discuss the results of the finite element

analysis for the stationary crack problem. We shall also give the SIF changes

for both stationary crack and quasi-statically advancing crack deduced through

a model for that case. The shape and features of the transformation zone for

the propagating crack are determined as discussed in section 4 starting from

the stationary crack zone. However, the stationary crack zone is now the one

deduced via the finite element calculations.

i -
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C 6E dA Af T bu ds + f C C 6c dA (20)
A S A

Equation (20) illustrates the nonlinearity of the problem. That is, the

second integral on the right hand side can only be determined after the

solution is found. Thus, the solution procedure will involve iteration.

Assuming a solution we determine the transformation zone. Next, we solve the

resulting linear problem arising from equation (20) with the second integral

on the right hand side evaluated and compare the solution with the assumed

one. The process continues until convergence is achieved. The linear elastic

solution can be used to initiate the process with eT - 0 i.e. with no

transformed region. This method is addressed in detail in the next section.

6. FINITE ELEMENT CALCULATIONS

The finite element method was used to solve the boundary value problem as

stated in the previous section. The domain (fig. 5) was discretized into 554

4-noded quadrilateral isoparametric elements with 4 integration stations. In

figures 6 and 7 the 224 element near tip mesh and the 320 element far field

mesh are shown respectively. The second mesh surrounds the first one. The

fine near tip discretization was used in order to ensure that the

transformation zone is determined fairly reliably. By using the standard

element displacement and strain interpolation matrices [A] and [B]

respectively, we rewrite the governing equation (20) as follows

[KI {uN } - {F + (F (21a)
N b T

with [K] f I [BIT [C] [BI dA (stiffness matrix) (21b)
A

{F b f [A]T {T) ds (applied load vector) (21c)
A

{F f [BIT {E I ds (transformation load vector) (21d)
T AT
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transformation zone appropriately. This is accomplished by taking into

account the perturbation of the linear elastic crack field induced by the

transformation. This subject is addressed in the next section.

5. THE BOUNDARY VALUE PROBLEM FOR THE STATIONARY CRACK

We are concerned with the stresses and deformations near the tip of a

long crack in plain strain. The body is loaded so that only mode I (tensile

opening mode) stresses arise at the tip. We are concerned with "small scale

transformation" where the transformation zone is confined to a region very

close to the crack tip. This can be achieved by imposing tractions on a

circular boundary far from the tip in agreement with the standard singular

linear elastic solution given by equation (5). Symmetry permits the analysis

to be confined to a semi-circular domain as shown in fig. 5. The crack

surface is traction free and the symmetry line is free of shear traction and

displacements normal to the line.

The governing equations in the plane can be stated by the principle of

virtual work in the absence of body forces.

aii dA =f Ti 6ui ds (19)
A ij' Aj S

where A is the area and S is the perimeter of the domain, T1  the

tractions on S and ui the displacements in A. The symbol 6 indicates

an arbitrary virtual variation of the quantity it precedes. In addition the

stresses are related to the strains by the constitutive law given by equation
( s. rer

, ' .'-(2). As a result, the governing equation (19) can be rewritten as follows

Pt. .,
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function of Aa , the amount of crack propagation. The slope versus Aa

decreases continuously and the curve appears to approach an asymptote for

large values of As. At that stage [19,20]

(l-v) AKD
E - 0.22 (18)-... E T vf V w

To maintain the critical propagation value of K KIC for the material at

the crack tip the loads would have to be increased with Aa. This will mean

an apparent higher value of K - KA computed from the applied loads. The

material will appear to be toughened as a result.

Consider now the shearing contribution to AK. According to our

hypothesis, particles enter the transformation zone ahead of the crack and the

direction of shearing transformation will be determined by the state of stress

there. We assume still that the stress field is unperturbed by the presence

of a zone and so Q equals to current value of measured from the crack4

tip. As the crack propagates by, this value of Q will remain unchanged for

that particle. Thus all particles on a line parallel to the crack will have

the same value of Q , except those in the zone created before the crack

propagated (fig. 3). The resulting contribution AKS from such a wake zone

is negative. The maximum of the absolute value of AKS  for all X is

achieved when the crack propagates 0.5w whereas the maximum of the absolute

value of AKD as found from equation (18), is achieved at Aa 5w. In

figure 4 the ratio IAKSlmax/IAKDlmax is shown plotted against the ratio X.

As it is seen, the amount of the shearing contribution to the toughening can

become the same as that of the dilatant contribution when X approaches 1.

In conclusion, the importance of the shearing contribution raises the need for

a more rigorous estimation. Therefore, it is required that we compute the

I,
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Results for stationary crack

In this case, the transformed zone has a perimeter which is the locus of

* ." points of equal hydrostatic stress. McMeeking and Evans (191 and Budiansky et

al. [201 have shown that AKD - 0 for this case.

As far as the shearing contribution is concerned, 9 is taken to be the

angle to the principal shearing direction when the material transformed, i.e.

at the edge of the zone then prevailing. The stress state is taken to be the

30
unperturbed linear crack tip field and thus ,-. As a result

(1-v) AKS

T V " 0.15X (17)

where w is the height of the transformation zone as shown in fig. 2, X is

the ratio yT/CT and v = 0.3. The transformation strain has been rewritten

as vf YT where y is the unconstrained transformation strain after
p .p

twinning for an individual particle.

Equations (16) and (17) indicate that the shearing effect causes fracture

toughness reduction. This reduction becomes larger as X increases i.e. the

shear strain yT increases for a given J. As a consequence, crack

propagation may occur more readily than in the absence of transformation.

Results for propagating crack

If the crack propagates quasi-statically and there is no reverse

transformation, a wake of transformed material is left along the newly created

crack surfaces. This wake will be parallel to the crack surfaces if we assume

that the tip propagates at a constant value of K (fig. 3). The dilatant

contribution to AK due to such a transformed zone has been studied by

McMeeking and Evans [191 and has been found to be a monotonically decreasing

.- -,-. ..-. . . -' -. ".-. .- .. ... .. . .
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McMeeking and Evans [19] have shown that

E -3
AK D f r cos (2 ) dA (13)

6 /R (l-v) AT

where E is the Young's modulus. From the form of the weight function h

T
and e it can be deduced that

3

AKS  3E yT  f r 2 cos(2 0--) sine dA (14)
8 /2 (1-v2)-A2

T

30
The fact that cos(--) is an even function of 0 allows the integral in

equation (13) to be computed in the region 0 < e < n (figures 2,3). The

same argument applies to equation (14) because yT sine is an even function

of e. That is because both y and sine are odd functions of e.

The SIF change AK is related to the applied field KA as follows

Kt  KA + AK (15)

where Kt is the S.I.F. that actually describes the crack tip field when the

transformation has taken place. If AK is negative equation (15) implies

that the stress intensity at the crack tip is lower than that associated with

the applied loads. In particular, since the crack propagates when Kt

becomes equal to the fracture toughness KIC of the pretransformed material

[14] the apparent fracture toughness KA is given by

KA¢ K - AK (16)
CIC

If AK is negative the material appears to be tougher than the pretransformed

one.
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principle of virtual work

AK fK. h  ds (9)
AT iiJ i

Substitution of (8a) into (9) furnishes

="-'iAK =f (e T - C j - C j) CijkX hi, dA (10)
AT r T R k

As further noted by Rice (251 CijkU ht,k is a stress field in equilibrium

in AT because h is related to the difference between two displacement

fields each possessing equilibrium stress fields. This means that the virtual

* work principle can be used to show

( R C h f n C h (uR+US) dS

AT ii ijkl h,k dAT =  i ijkX h,k ( U

= 0 due to (8c)

This means that equation (10) is written as

AK = i E4J Cijkk hik dAT (l1)
AT

For isotropic material, equation (11) becomes

AK AKD + AKS  (12a)

where AKD  B f T hk, k dA (dilatational contribution) (12b)
AT

KS - 2p f T h dA (shearing contribution) (12c)
AT ii

6P P .

*- - - S .. *-. . -.

I. ...--- -,-- -.'.". ....
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constraint within AT. This will give rise to an elastic stress such that

s S ~Tolj - jkl I k

aS 0 in AT (7)

Sni - 0 on S
ij T

where n is the unit outward normal to ST and aS i = - with
ij'i x i

denoting position in a fixed cartesian coordinate system. Tractions are now

applied around AT  producing further displacements uR and strains R so

that AT has its original shape prior to transformation. As a result

R ( + s - ET (8a)

=0 in AT (8b)

R S

ui + ui  0 on ST (8c)

Using a R we can express Tc as follows

TC n RTj i

Thus, equation (6) becomes

R

AK =-f n h ds
S T

As noted by Rice [25], h can be treated as a displacement and so by the

0.
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AK -- 1.70 MPa /m

iv) experimentally measured value

AK -- 2.4 MPa /'m (implies X 1.7)

For another system whose the parameters are [211: E -470 GPa, ET-0.04 w

5.10-6m, vf -0.3 one has

1) with purely dilatant transformation

A 3.96 MPa V'm

ii) with both parts of the transformation and X =I

AK =-6.30 MPa i'm

iii) Lambropoulos' result (both parts of the transformation, spherical

particles and KIC 6 MPa V;m)

AK-4.5 MPa V'M

iv) experimentally measured value

AK -6 MPa i'm (implies X 0.9)

In the case of the MgO partially stabilized Zirconia whose parameters are

[191: E 200 (;Pa, C T 0.058, w 6.10-6m, vf 0.3 one has:

i) with purely dilatant transformation

AK =-0.85 1{Pa i'm

ii) with both parts of the tra-.isformation and X I

A 1..35 MPa i'm

iii) Lambropoulos' result (both parts of the tranformation, spherical

particles and KIC 1.97 t4Pa im

AK=-1.04 MP ai'
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iv) experimentally measured value

AK - - 2.3 MPa Vm (implies X 3)

The preceding toughness enhancement calculations should be regarded

tentative because of the uncertainties involved in the material parameters.

Nevertheless, it is clear that the predicted toughness increase may be in

agreement with the experimental data when the shearing contribution is

considered in the transformation mechanism analysis. An important role is

played by the parameter X which determines the amount of the shearing

contribution. We have arbitrarily used I because we have no information on

what values may be realistic. Alternately, we can compute a value of X

necesssary to bring our estimates into agreement with the experimental values.

These are the implied values of X listed. Some of these values are rather

large. However, the amount of shear strain during transformation is typically

quite large compared to the dilatation. Even if substantial amounts of this

are nullified by twinning, this could still leave values of X of the order

implied.

9. CLOSURE

For further and more elaborate treatment of the shear effect one may need

to incorporate size and particle orientation effects via a more realistic

constitutive law for the composite. This must include a consideration of the

effect of twinning during the transformation. However, our simple

calculations have indicated that shear strain effects may be significant and

that further work on the mechanics of the phenomenon may be profitable.

S

O

. . .* **; .°. ' . . -.- .--.*..i i i ".. . . - "
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TABLE CAPTIONS

Table 1. Stress intensity factor changes for the stationary crack calculated
by the finite element method.

Table 2. Stresj intensity factor changes for the propagating crack when
y /ET - 0 deduced from the finite element calculations.

Table 3. Stres i~tensity factor changes for the propagating crack when
X = y /e - 0.5 deduced from the finite element calculations.

Table 4. Stresf iJtensity factor changes for the propagating crack when
X = y /E= 1 deduced from the finite element calculations.

Table 5. Maximum fracture toughness changes achieved after the crack has
advanced quasi-statically.

0

|.'

|0'
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Table I

Stress Intensity Factor Changes for the Stationary Crack

(l-v) AKD (I-v) AK
x w

(zone height) E e vf E eT vf Vw

0.00 2.14 -0.0085 0.0000

0.25 2.14 -0.0066 0.0381

0.50 2.14 -0.0066 0.0762

* 0.75 2.14 -0.0049 0.1145

1.00 2.14 -0.0049 0.1527

AKD = Dilatational SIF change

AKS - Shearing SIF change

4..

O .
- ,.4

. .. 4 . . . ,. . -,. . . . . .. ,. . . - , . .
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Table 2

Stress Intensity Factor Changes for the Advancing Crack When X 0

Aa (1-v) AK (I-v) AKs  (i-v) AK

w E eT v V- E eT v /W E e Tv V-
T T

f f f

0.0 -0.0085 0 -0.0085

0.2 -0.0780 0 -0.0780

0.5 -0.1270 0 -0.1270

0.8 -0.1550 0 -0.1550

1.1 -0.1723 0 -0.1723

2.0 -0.1961 0 -0.1961

3.0 -0.2055 0 -0.2055

4.0 -0.2097 0 -0.2097

5.0 -0.2119 0 -0.2119

7.0 -0.2142 0 -0.2142

10.0 -0.2157 0 -0.2157

15.0 -0.2167 0 -0.2167

20.0 -0.2171 0 -0.2171

30.0 -0.2174 O -0.2174

Aa = Dimensionless crack advance
w

AKD - Dilatational SIF change

AKS  = Shearing SIF change

S AK - Total SIF change

'.A

4

N

.. v '-.'. . . ... .'. -.- ..- .- " • -- - -. : - .~. > . . -..:--:-:- "..-.. ..-.-.-.-.- , - -,.', -v .
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Table 3

Stress Intensity Factor Changes for the Advancing Crack When X = 0.5

(1-v) AKD (1-v) AK5  (1-v) AK

w T TT
E e vf / E e vf V/ E e vf /

0.0 -0.0066 0.0762 0.0695

0.3 -0.0961 -0.0954 -0.1915

0.6 -0.1362 -0.1057 -0.2419

1.0 -0.1656 -0.0860 -0.2516

2.0 -0. 1943 -0.0376 -0.2319

- 3.0 -0.2037 -0.0312 -0.2348

r 4.0 -0.2079 -0.0298 -0.2377

. 5.0 -0.2101 -0.0287 -0.2388

10.0 -0.2139 -0.0268 -0.2407

3 15.0 -0.2149 -0.0258 -0.2406

20.0 -0.2153 -0.0247 -0.2400

30.0 -0.2156 -0.0230 -0.2386

A Dimensionless crack advance" .: w

AKD f Dilatational SIF change

L AKS = Shearing SIF change

(AK) = Total SIF change

L

p
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Table 4

Stress Intensity Factor Changes for the Advancing Crack When X 1

Aa (1-v) AKD (1-v) AKs  (1-v) AK

Eevf w E e vf /w E e vf /W

0.0 -0.0049 0.1527 0.1479

0.3 -0.0944 -0.1904 -0.2848

0.6 -0.1344 -0.2110 -0.3454

1.0 -0.1638 -0.1718 -0.3356

2.0 -0.1925 -0.0744 -0.2669

3.0 -0.2019 -0.0620 -0.2638

4.0 -0.2061 -0.0592 -0.2653

5.0 -0.2084 -0.0570 -0.2653

10.0 -0.2121 -0.0532 -0.2653

15.0 -0.2131 -0.0512 -0.2643

20.0 -0.2135 -0.0492 -0.2626

30.0 -0.2138 -0.0455 -0.2594

Aa.-- =Dimensionless crack advance
w

AKD - Dilatational SIF change

AKS = Shearing SIF change

AK = Total SIF change

.. . . , .. .-. . . -.. .. . ,,, -. ,-- - -. i.:,.. . .-.- . ... ..- .' . , ' ' ' ' . , ' . ' ..
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Table 5

"Asymptotic" Fracture Toughness Changes for the

Quasi-Statically Advancing Crack

Aa (1-v) AK

w ~E e Tvf w

0.00 5.0 -0.2119

0.25 3.2 -0.2202

0.50 0.9 -0.2527

0.75 0.8 -0.2991

1.00 0.7 -0.3494

X= YT/E T

- = Dimensionless crack advance
w

AK -SIF change
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Figure Captions

Fig. 1 a. Direction Q of the maximum shear stress T

b. Shape change of an unconstrained transforming element. The
shearing direction is along the maximum shear stress direction.

Fig. 2. Transformation zone shape based on critical hydrostatic stress
transformation and the unperturbed elastic solution for the
stationary crack. The maximum height w of the zone appears at
= 600. The shearing direction Q at transformation is also
indicated at an arbitrary point (r,e).

Fig. 3. Transformation zone shape for the quasi-statically advancing crack.
The flank of the zone is parallel to the crack surface and tangent
to the leading front of the zone at e = 60. The shearing
direction of the newly transforming elements is determined by the
angle Q at the leading front of the zone. The initially
transformed elements retain their own shearing directions.

Fig. 4. Comparison of the maximum shearing contribution to the toughness

enhancement with the maximum dilatant contribution. Those
contributions are derived from a zone shape shown in fig. 3 when
the crack propagated. The zone for the stationary crack is shown
in fig. 1. The AKS is achieved after Aa - 0.5w whereas the
AKD is achieved after Aa = 5w.

Fig. 5. Domain and boundary conditions for the boundary value problem for
the stationary crack.

Fig. 6. Near tip finite element mesh.

Fig. 7. Far field finite element mesh which surrounds the mesh shown in
fig. 6.

Fig. 8. Transformation zone for th stationary crack in the case of purely
dilatant transformation (y - 0) derived by solving the boundary
value problem by the finite element method.

Fig. 9. Comparison of the zone boundary of fig. 8 with the zone boundary
derived by McMeeking and Evans [19] for the purely dilatational
transformation and marked D. (fig. 2).
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Fig. 10. Transformation zone for the stationary crack when the unconstrained

shear transformation strain is equal to the unconstrained volume
dilatation. The zone has been derived by solving the boundary
value problem by the finite element tethod.

Fig. 11. Comparison of the zone boundary of fig. 10 with the zone boundary

derived by McMeeking and Evans [19] for the purely dilatational
transformation (fig. 2) (D).

Fig. 12. The R-curve predicted from the stress intensity factor analysis in
the case of purely dilatational transformation.

Fig. 13. The R-curve predicted from the stress intensity factor analysis in
the case when the unconstrained shear transformation strain is
equal to the unconstrained volume dilatation.
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SUMMARY

A continuum mechanics description, of the phenomenon of stress induced

microcracking has been used to study the near tip stress and strain fields and

the size and shape of a small scale damaged zone for a stationary mode I crack

in an elastic body. The material model is characterized by a microcracking

criterion, which is an extension and simplification of the generalized

microcracking criterion proposed by Fu and Evans [101 for the case of thermal

stress-induced microcracking. That together with approximate expressions

relating the effective composite moduli to the elastic properties of the

brittle material, via the microcrack density E first introduced by Budiansky

and O'Connell [11, yield a self consistent approach to the stress induced

microcracking phenomenon.

The microcrack density was found to characterize thr'e regions of

interest. In the outer region the microcrack density is zero and the stress

and strain fields are purely those for linear elastic deformation. This

elastic field constrains the microcracking deformation which in combination

with material weakening due to microcracking causes stress relaxation in a

region of intermediate microcracking. Very close to the crack tip the

microcrack density is saturated and the stress field becomes again singular

but with a lower stress intensity than would prevail in the absence of

microcracking. In the case where very rapid microcracking occurs as the

strain is increased, the intermediate microcracking zone is still present

providing continuity of the strain field and a smooth transition of the stress

field from the purely elastic region to the region with saturated microcrack

density. It appears that the existance of the region of intermediate

microcrack density is essential to preserving the assumption of a continuum

composite because it helps to avoid any strain and stress discontinuity.
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INTRODUCTION

The self consistent aproach to the stress-induced microcracking of

brittle materials, as already mentioned, is based on two major notions. The

notion of a microcracking criterion and that of effective elastic properties

of the microcracked material. The microcracking criterion relates the induced

microcrack density E to the existing stress magnitude. The effective elastic

properties of the microcracked material are then functions of the initial

elastic properties and the microcrack densIty. Budansky and O'Connell [11,

introduced the microcrack density parameter E given by equation (1)

2N A
2

E < - ,(-)
itP

where N=number of microcracks per unit volume, A is the area of the microcrack

surface and P is the perimeter of the microcrack. Using energy balance

considerations and fracture mechan. s analysis they were able to derive

mathematical expressions relating the effective elastic properties of the

actual state to those of the unmicrocracked elastic state, through the

microcracking density E. We will make use of the work of Fu and Evans [10] to

construct a microcracking criterion which will relate increases in the

microcracking density to increases in stress magnitudes. Together with the

self consistent results of Budiansky and O'Connell [1], the microcracking

criterion can be used to develop a constitutive law for the inelastic behavior

of a microcracking continuum.

nur interest is in the development of microcracks near the tips of major

cracks. To study this phenomenon in an approximate way, we use the

constitutive law for the microcracking material in finite element calculations

of either plane strain or plane stress deformation near the crack tip. These
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results are relevant to the question of microcrack toughening in br4ttle

materials. Before we proceed to describe these results we will discuss

briefly some previous work on this problem.

Hoagland, et al. [2], proposed a simplified method for estimating the

density of microcracks in the vicinity cc a major crack tip. They assume a

set of randomly oriented lines, which are the traces of the potential

microcrack planes, and which become microcracks when the stress normal to the

line exceed a critical value. They also assume that the dimension of the

microcracks is very much less than the major crack size of the model. In

determining the stress intensity, they used the singular elastic stress field

near the crack tip. Later studies done by Evans [31, suggest that the uniform

microcrack density analysis presented by Hoagland et al. is inaccurate because

there is an increased density of microcracks at the higher stress levels,

which more strongly biases the microcrack density towards the crack tip.

In 1980 Hoagland and Embury [41, suggested a numerical procedure for

modeling the number and distribution of microcracks around a crack tip, as a

function of the applied stress intensity. The procedure accounts

approximately for microcrack-microcrack and microcrack-crack interactions.

This work is actually an extension of their original concept of nucleating

microcracks based on a uniform fracture stress by adding new stress fields,

whenever a new microcrack is nucleated. Although Hoagland and Embury arrived

at some useful conclusions concerning the stress induced microcracking in the

vicinity of a major crack, their results are restricted to a two-dimensional

problem with through thickness microcracks extended along the third

dimension. In contrast to that the theory developed by Budiansky and

O'Connell accounts for microcracks with finite third dimension (i.e.,

". . .;°-. . -.~ . ... .-'
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circular, elliptical, etc.) and allows this effect to be introduced in an

approximate way.

A more thorough investigation of the mechanics of microcrack toughening

was carried out by Fu and Evans [101. In their work they established the

basis of a continuum mechanics description of the microcrack toughening

process. The constitutive behavior of the microcrack zone is based on the

*' overall strain response of a microcracking medium, subject to a uniform stress

field. A generalized microcracking criterion for microcracking at facets

- subject to general stress is proposed. Stress induced microcracking is

- initiated at a threshold load. Above the threshold load, the stress/strain

behavior becomes nonlinear. During unloading, linearity resumes and

-- hysteresis is present, corresponding to dissipation of strain energy.

THE MICROCRACKING CRITERION AND CONSTITUTIVE LAW

Fu and Evans [10] studied the phenomenon of stress induced microcracking

of grain boundary facets. These facets are generally subject to residual

stresses caused by thermal expansion anisotropy of the neighboring grains.

When a high tensile stress is applied, favorably oriented facets crack. The

crack is confined to that facet and it takes a much higher stress to cause it

to propagate out of its initial grain boundary interface. As a consequence,

the process of microcracking is at least initially stable, with a steadily

increasing stress causing the nucleation of more cracks rather than the

* Ipropagation of existing ones.

From experiments and fracture mechanics analysis, Fu and Evans concluded

that a particular facet will crack if it is larger than a critical size which

depends on the resolved applied stress and the residual stress on the

interface. In this notion is implicit the idea that facets can microcrack due
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to the residual stress alone if the facet exceeds a critical size. Fu and

Evans were able to phrase their results in terms of a parameter E introduced

.. by Budiansky and O'Connell [1] to describe microcrack density. When there are

- N circular microcracks per unit volume and the microcracks are of uniform

3
size with radius a then S = Na 3 . Fu and Evans studied microcracking due to

macroscopically uniform biaxial stress fields (with principal stresses

>02, i>0 , kC 2/01 ). From their analysis and observations, they proposed

e X (0)(a a for a1 > c (2)

where X is a parameter that depends on stress state and material properties

but independent of stress magnitude. For example X for k=1 is twice the value

of X for k=O. The parameter E represents the density of microcracks

introduced by the applied stress that is in excess of any initial density.

Thus the microcrack density E increases linearly with stress and does so up to

a saturation level, after which it remains constant. e is unchanged by a

reduction of stress.

We require a criterion for microcracking which can be used in more

general states of multiaxial stress. For this purpose we will modify equation

* -(2) to become.

a f C) if a > a (3)

i where a= /0 is an effective stress, oC is the critical stress fori-'ij

S-.microcracking initiation and X is a material constant independent of stress

. state. Of course equation (3) only applies when the largest principal stress

* is tensile and increases monotonically. The criterion (3) is somewhat

different from that proposed by Fu and Evans [10]. If we take the uniaxial

" S "

6t
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stress case with a, a0 as a datum then both criteria give e - X (a -a )
U C

where X is the value of X from Fu and Evans theory for uniaxial tension. For
U

equal biaxial tension (a 02 = a), Fu and Evans' criterion gives

e" = 2%(a - a ) whereas the one we have proposed leads to £ X xu(v2 - 0cc)

Thus our criterion shows a reduced rate of microcracking in biaxial tension

compared to the rate suggested by Fu and Evans but microcracking starts at a

lower stress according to our criterion. It can be argued that the microcrack

density in biaxial tension would not be double that for uniaxial stress, since

a given facet cannot be cracked twice. That is, unless the families of facets

cracked by each applied stress component are mutually exclusive. However we

are interested mainly in a simple constitutive law with appropriate

characteristics for microcracking to illustrate what will occur near major

crack tips. We will develop more exact microcracking laws in future work.

We summarize our microcracking criterion as follows.

For monotonically increasing stress, if

aR < a then c = 0 Material remains unmicrocracked

a < aR < aM  then e X( - a ) The microcrack density is

increasing linearly with a (4)

R > M then E X(OM a M The microcrack density is saturated.

Furthermore C cannot decrease. The stress/strain relation given for a

macroscopic element of material is linear for non-microcracked regions (eu0),

becomes nonlinear for regions with increasing microcrack density O<<<M and

again becomes linear for fully microcracked regions (e = eM). During

unloading linearity resumes and when material unloads to zero stress no

permanent strains are present as shown in fig. (1).



It should be noted that the microcrack distribution produced by a

deviatoric applied stress coupled with the residual stress will be

anisotropic. However, Fu and Evans ised the isotropic theory of Budiansky and

O'Connell [11 to determine macroscopic moduli for the microcracked material.

that is they used C as if it represented a random distribution of microcracks

rather than an oriented one. We will follow Fu and Evans in this regard to

obtain an approximate continuum theory for microcracking.

We have found that we can approximate Budiansky and O'Connell's results

as follows.

-- V 16 (5)
E v 9 f

where E, v and E, v are Young's moduli and Poisson's ratio for the material

before and after stress induced microcracking respectively. Note that E and

v are defined at constant E. Thus the constitutive equation for the

* microcracking solid becomes

e -O a -a (6ii E ij E kk ij 6

where p. is the macroscopic strain, a is the macroscopic stress, is the

kronecker delta and rules for f are given by equations (3), (4) and (5).

The cnstitutive equation (6) is only valid for values of the

microcracking parameter f within the interval j<f<-, fig (3). This together

D with equation (5) defines the limiting values of the microcracking density ,

0 < h a (See fig (3)). The upper bound of with the aid of equation (3)

" yield a relation between the critical stresses Oc t o M and the parameter X

9 1

i.e., a < a9 1tt (See fig(.
. - R7

.-. f~ -. -v
elJ = T .L - E °k -J(6
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FORMULATION OF CRACK TIP PROBLEM

The high stresses near the tip of a long crack will cause microcracking

in the near tip region in the material of interest to us, as shown in fig

(5). We will restrict our attention to the situation where the zone of

microcrack damage is very small compared to the body containing the crack. We

will refer to this situation as small scale microcracking. In this case, the

microcrack zone will lie within a region of uncracked material, some distance

outside the zone, the stresses will be almost the same as when the material

does not microcrack. When small scale microcracking prevails, these stresses

will be the singular linear elastic crack tip stresses.

It follows that the plane small scale microcracking problem can be solved

by considering a plane region around the crack tip to which are applied

boundary tractions given by the linear elastic stress field, i.e.

KI
Ti =nj aj nr I ij (8) (7)

where T are the boundary tractions, n is the outward unit normal to the

region boundary, KI is the mode I (tensile opening mode) stress intensity

factor and (r,8 ) are polar coordinates originating at the crack tip as shown

in fig (6). The function determines the angular distribution of stress and

its form can be found in the article by Rice (23]. The crack surfaces are

traction free. To ensure small scale microcracking, K I must be limited to a

level low enough that the zone size is small compared to the region for which

the analysis is being carried out

The governing equations of equilibrium and compatibility are enforced

- through the principle of virtual work

.-.......-. .-.....-. -. 2.r-.-, ..-.......-...---.... -.--.- ,--. ---- ,,,,,.-,--.,
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fA aiJ 6 eij dA f S Ti 6ui ds (8)

in the absence of body forces, where A is the plane area being analyzed, ST is

the perimeter where tractions are prescribed, M are the displacements and the

symbol 5 indicates a virtual variation of the quantity following it and the

variation disappears on S - ST.

The constitutive law for the material has been described in the previous

section. However, we will find it useful to state the following form.

E E*v
ai ik ek = e~ + (vFe 6(9)j Cjkl ekl f+V ij (f-2v)(f+v) kk ij

where f 1 and E = e(g) as in equation (3)

For plane problems

e L - +(c[v -v*a 6 ] , , y = 1, 2 (10a)

=-c fv[e= + (1-2v*) e 61(1

E V

where V* for plane strain and v* = f+v for plane stress. The governing

equations, together with the appropriate boundary conditions corresponding to

a specified geometry, define a boundary value problem whose solution we will

obtain numerically.

THE FINITE ELEMENT EQUATIONS

The finite element equations can be derived from the principle of virtual

work given by equation (8). Finite element interpolations together with

p

- . I
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equation (8) and the constitutive law (9) and (1O.0), give rise to the

nonlinear finite element equations

[k(un)]{u n} {F) (11)

where [k] is the stiffness matrix, {un } the nodal displacement vector and {F}

the force vector. The notation [k(un)] indicates the dependence of the

stiffness on the nodal displacements due to the nonlinear constitutive law.

In the finite element analysis, a 4 noded quadrilateral isoparametric

element with 4 stations for the integration of stiffness was used. The finite

element equations (11) were solved using an interative method updating the

stiffness matrix in every iteration. The microcracking parameter f was found

to be the root of a sixth order polynomial in f which satisfies the conditions

imposed on f earlier in this work i.e. j<f<-. The coefficients of the

polynomial are strain dependent and had to be recomputed in every iteration

[see Appendix II.

To ensure small scale microcracking, the outer radius of the mesh was

chosen to be 15 to 20 times the outer radius of a damaged zone, estimated from

the stresses in the absense of microcracking.

RESULTS

Stress-strain fields

Figs (7) to (8) display the stresses and strains ahead of the crack tip

for various choices of X and CM. X is the rate of increase of the microcrack

density with respect to the effective stress and cM = X(aM-Oc) is the

saturation value of the microcrack density.

In the unmicrocracked region, both stresses and strains agree quite

closely with the solution obtained for an unmicrocracked material. The

elastic strain and stress fields constrain the deformation due to
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microcracking in the damaged zone. The above constraint together with the

weakening of the material in the damaged zone due to microcracking, causes

stress relaxation in the region of intermediate microcracking. Very close to

the crack tip the microcracking density is saturated and the stress and strain

fields become singular again. We observe that the amount of stress relaxation

increases with X and it reaches its maximum level for X= -. At this point we

notice the importance of the presence of the zone of intermediatme

microcracking, for its presence ensures a smooth transition for both the

strain and stress fields from the outer to the inner asymptotic fields. The

absence of the above region would lead to infinite strain and stress gradients

along the boundary of the fully microcracked material and the unmicrocrack

material [see Appendix I]. We also notice that in the stress relaxation

region, the effective stress which in our case is the equivalent stress

aR = /0ij ojj is consistent with the naicrocracking law eq (3), fig (2) that we

used. In the particular case of X= w, OR=Oc=l.0 as we expected. In this

situation, the partially microcracked zone is like a perfectly plastic zone.

The zone with saturated microcrack density is dominated by microcracking

deformation with larger strains and stresses at lower levels than would

prevail in the absence of microcracking.

The shape and size of the transformed zone

A typical microcrack zone is shown in fig. (5). Three characteristic

quantities describing the microcrack zones that we studied were consistently

computed. xm is the distance along the x axis at which the microcrack zone

boundary crosses the x axis. hm denotes the y coordinate of the farthest

point along the y direction to experience microcracking and em is the polar

angle corresponding to the same point. The boundary of the inner zone, where

" - '-- . '- -" . '." . " . . . " -'-.
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the microcrack density is saturated is also characterized by the corresponding

quantities x., h. and Os fig. (5).

Fig. (9) to fig (9y) show how the above quantities depend on the second

critical stress aM, for fixed values of cc and EM =(aMa-c) . The size of

the fully microcracked zone is inversely proportional to the value of the

second critical stress aM. Similarly high saturation values of the microcrack

density yield small saturation zone. There is an increase in the size of the

above zone in both directions as X increases or aM decreases. In no case does

the inner zone becomes identical with the whole damaged zone because as we

said earlier the existences of a zone of intermediate microcracking is an

essential feature of the microcracking law eq(3). The microcrack zone

boundary depends on the first critical stress ac. For fixed values of both

the first critical stress cc and the saturation microcrack density the

microcrack boundary tends to stretch along the x axis while reduction of hm is

observed, as X increases. The angles Om and Gs corresponding to hm and hs

drop from 788 for small values of X, to 490 as X becomes infinite. Fig (10)

shows microcrack zones obtained through our finite element analysis. Fig (11)

and (12) show the profile of the microcrack density ahead of the crack tip for

various values of aM.

Plane stress results

Similar results to those of the plane strain case were obtained for the

plane stress case. The transverse constraint of the plane strain case

produces large transformation zones. the overall response of a microcracking

material was found to be similar for both plane strain and plane stress cases.
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DISCUSSION

Using the concept of the microcrack density E first introduced by

Budiansky and O'Connell [i together with a further simplified microcracking

law proposed by Fu and Evans [10], we establish the basis of a continuum

mechanics description for the phenomenon of stress-induced microcracking in a

brittle polycrystalline composite. With appropriate integration of the

constitutive relations we were able to obtain information as to what happens

in the process zone at the vicinity of the crack tip of a major crack under a

mode I loading in a material susceptible to microcracking. For appropriate

choices of parameters, the transformation zone, as in the case of small scale

yielding in a ductile material, is well contained. The stress and strain

fields exhibiting the characteristics shown in fig (7) and (8) are well

behaved. When the first critical stress C and the saturation value

CM are specified, the second critical stress CM or the variable X appearing in

the microcracking law control the rate at which the material microcracks and

affects the stress and strain fields as well as the shape and size of the

transformation zone.

At this point, we have all the necessary tools for a full scale

investigation of the phenomenon of microcracking. Such an investigation

should address the question of the possible effects on material toughening due

to microcracking. Further work is necessary to elucidate the nature of the

crack propagation criterion. In addition studies done by McMeeking and Evans

[61 and Budiansky et al. [71, suggest that the toughness of certain ceramics

can he substantially enhanced through the controlled use of martensitic

transformation. Faber [91 found that microcracking contributes to the

toughness of Zr02 - ceramics and Fu and Evans [10] found that stress induced

microcracking enhances the toughness of brittle polycrystalline aggregates.
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The finite element analysis will substantially contribute to a better

understanding of the mechanics of stress induced microcrack toughening in

brittle material. As we saw earlier in our analysis, a zone with saturated

microcrack density always exists. We may be able to treat this zone as being

composed of homogeneous elastic material and use a Griffith criterion for

propagation of the major crack into this zone. McMeeking, in unpublished

work, has shown that the material obeying the constitutive law of eq. (3-6) is

nonlinear hyperelastic. It follows that the J-integral is path independent

throughout the material in both unmicrocracked and microcracked regions. As a

consequence, the energy release rate for the microcracking material will have

the same value as in the nonmicrocracking material at the same applied loads.

Thus if the critical value for propagation is unchanged, then no microcrack

toughening can occur. However, the critical energy release rate for fully

microcracked material may differ from that for the unmicrocracked case. A

simple model of the crack growing from microcrack facet to microcrack facet

suggests that the average critical energy release rate would be less and so

microcrack embrittlement would occur. However, aspects of R-curve type

behavior and more realistic microcracking laws may hold the clue to microcrack

toughening. Some of these issues have been addressed by Faber [9] and we will

consider such issues in the future.
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APPENDIX I

We consider an element consisting of two dissimilar material

E, v are the Young modulus and Poisson's ratio for an unmicrocracked material.

E, V are the corresponding moduli for a microcracked material.

We require that the material remains continuous after deformation. Thus from

equilibrium and compatibility we get the interface conditions

a =a 1
xx xx

eyy interface conditions.

a =a 0
xy xy

The constitutive relations for plane elasticity case are

e - V* a 6 V* V Plane strain
e3 E -- (yy a

unmicrocracked
E (i V* cl) *=

solid = "(e + e v* -V Plane stress

- f+v -*y yi a ' 17-v

e +(a .7*C 6 v ~Plane strain
aO E ap yy ap

microcracked
- E v
cap - V - 6 ) v* - Plane stress

solid v (e. + e 1P f+v

where f 16 where C is the microcrack density.
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9
let a - %ac +-;

9
- %,cc• v + - (v-l)

y - V16

then for plane strain:

2
a6  a

- 2a 2ap - 4va2

a4 = + 2ay - 8vap + 4v2a2 - X2E2 [e2 + e 2 + I yxy

a3 20y - 4v(p 2 + 2ay) + 8apv 2 - 2X 2 E2 v[(e +ey) - 2v[e + e2 + Iy 2] (8)
xy x y xy

a2 =y2 _ 8voy + (02 + 2ay)4v2 _ (XEv) 2[4(e + e 2 + Ly - (e + e 2
yx y

a= 8yv
2 - 4vy

2

a= 4v2y
2

for plane stress

2
6fa

a = 2ag - 2va 2

2 2 2 2 22 e2  1y 2 j
a4= + 2ay - 4vcrp + v x -XE [e +e+

2 2 o+2y 22 2av XEv4 9
a2 = y - 4yv + v2 ( 2 + 2ay) - (%Ev) 2[e2 + ey 2 Iy]

2 2 T x
a1 = 2pyv

2 -2vy
2

2 2a0 v y

,.I



APPENDIX II

The microcracking law given by equation (3) earlier in this paper allow

us to determine the microcrack density C for a given stress state. It is more

16
convenient to determine E or f 1/0l -- g~- C) for a given strain state.

from the constitutive law a E i + v e 6 1
ij f+v i f-2v jeJ ij

1/ lE e + 2f-v 2 1/2
we get (a [e,~ e,,.. +i vi (-2 ekk (2)

then we have the following cases in computing f.

0. a) (f) < cc > e= 0 1> (3R C16

ii) a R )> M>~ > = (M~c => 6 4

96 M

ii<) < f < CM => e = (aR ad'j. 5

substituting aR from equation (2) in eqn, (5) we have

( 1 E ~) X..~- e 2f-v 2kki -

160 fl ~ eje, +v 2 ek (6)
16 f~v i~j(f-2v)C

which is a sixth order polynomial in f of the form

6 5 4 3 2 1

whose coefficients are given below.
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stress discontinuity

we allow Cax a xx and require e -y ey

we get (f+v)(1-v*)aj =y (1--i*)a yy+(V*(f+v)-v*(1+v))c a

or ay yy for Plnx srs

or-l a T for Plane stress

and a m a- (f-i) a for_ Pln staiyy f -V

strain discontinuity

we allow e =e and require a m
yy yy xx xx

wev* (f+v)(1-27*) V* 1-v* (f+v)(1-2v*)
weget e = (lI- 1.)(1-2v*)1.-

xx (1-)12* (1~)12* -* "xx

-f-2v 1 -v (f-v)(f-2v)
Plnesran: exx (1-2v)(1-V) f--v )Vyy f-v (1-v)(1-2v) xx

2
V f f-1 1 f+v

Plane stress: ex 1-V 2 e y + +.- exx)

Notice that for f=l (unmicrocracked material) a = a and ec; exx, both
yy

stress and strains are continuous, for microcracked materials Dl1 and

a y< a ywhereas ex > exx * The strains are larger in the microcracked region

and the stresses fall to a lower value.
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SUMMARY

A solution is presented for the elastic stress intensity factors at the

tips of a slightly kinked, partially closed crack in compression. The solu-

tion is accurate to first order in the deviation of the crack surface from a

straight line and is carried out using perturbation procedures analogous to

those of Banichuk [5], Goldstein and Salganik [6) and Cotterell and Rice [7]

for the problem of an open crack. Comparison with the exact solution indi-

cates that the asymptotic solution is accurate for values of the angle between

the straight crack and its out-of-plane kinks up to about 200.

1. INTRODUCTION

Experiments on glass plates containing pre-existing planar through cracks

oriented at an angle to the direction of the axial compression have revealed

that the relative sliding of the faces of the pre-existing cracks does not

result in co-planar crack growth, but rather produces at the tips of the pre-

existing cracks small tension cracks which deviate at sharp angles from the

sliding plane [1-4). These experiments are designed to be models for the pro-

pagation of cracks in rocks in compression. In this paper, we are concerned

with the calculation of stress intensity factors at the tips of the kinked

open extensions of a closed sliding through crack. The same method can be

extended to a curved crack with several closed sections. The solution ob-

tained is accurate to first order in the deviation of the crack surface from a

straight line drawn between the kink tips and is carried out using perturba-

tion procedures similar to those used in Refs. [5-91 for the problem of the

open crack. The results can be stated in terms of known solutions for a

single straight crack or a co-linear array of straight cracks.
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A complete solution to the problem of the sliding kinked crack has been

given by Nemat-Nasser and Horii (3], who used a continuous distribution of

dislocations to model the crack and its kinks. In order to find the stress

intensity factors, they solved numerically a singular integral equation for

the dislocation distribution. In contrast, we can avoid the solution of the

singular integral equation by using the results of the asymptotic analysis for

the stress intensity factors. However, the validity of the asymptotic solu-

tion is limited to small deviations of the crack surface from a straight line.

Comparisons with the exact solution given in Ref. [3] indicate that the first

order solution for the mode I stress intensity factor is accurate for values

of the angle between the straight crack and its out-of-plane kinks up to about

200.

2. GENERAL FORMULATION OF THE PROBLEM

2.1 Formulation of the boundary value problem

Consider an infinite plate of a homogeneous, isotropic, linearly elastic,

brittle solid containing a curved crack on y - X(x) , with its tips at the

positions x ± ta (Fig. 1). A uniform state of stress a , O and a0

is applied at infinity, with 0yy < 0 and a < 0 , where tension is
yy xy

regarded as positive. The corresponding two-dimensional boundary value

problem is given by

a -0

2Eij ui,j + uj,i in V()

°ij Cijkkl
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ij- 013 at infinity, (2)

ann(X, - Xns(X, X) - 0 on the open portions of the crack, (3)

ans(x, X) - Lann(x, X) on the sliding portions

u+(x, X) u-(x, X) of the crack, (4)

where aij , Eij and ui are the stress, strain and displacement fields in

the region V occupied by the body, Cijkl is the fourth order tensor of the

elastic moduli, ann and ans are the normal and shear tractions at the

crack surface, un is the displacement in the direction normal to the crack

surface, g is the coefficient of friction, Ai is BA/8xi and the super-

scripts plus and minus denote the value of the indicated quantity on the upper

and lower surfaces of the crack. Note that the open and sliding portions of

the crack are, in general, not known in advance and their determination be-

comes part of the solution.

2.2 Small-parameter expansion

The essence of the approximation we use is that the solution to the pro-

blem with the curved crack is close, in some sense, to the solution of a

similar problem for a straight crack. In fact, we shall use the solution to

the following problem, involving a flat crack, as the leading or zeroth order

' (0) (0) (0)approximation in our expansion. Let 0  , E and u be such that

I

2c'") (0) +() in V (5)
i " i,j ji

am0 C (0%j ik~i'
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(0) (and (Y -Oij at inf inity (6)

0(0)(x, 0) - (0)(x, 0) - 0 on the open portions of the crack, (7)
yy xy

a(x, 0) ()(x, 0) on the sliding portionsxy = tyy

Uy(x, 0) u y(x, 0) of the crack, (8)
y

where V' is the plane with a straight slit lying on the x-axis from -a

to a . If the slope of the actual crack, X'(x) , has order of magnitude

E << I at its largest, then we can seek a perturbation expansion in C for

the solution to the problem of the curved crack, such that

a a (0 ) + 0(1) + 0(e2) , (9)

C -(0) + C(1) 2 (10)

u = u(0) + + 0( 2 ) , (11)

where a(l) * CO) and u(I)  are all 0(c) compared to the leading order

terms. We mention that X'(x) - 0(c) also means that X(x)/a - 0(e) , be-

cause X(*a) - 0 . What remains now is the finding of the equations and the

(1) (1) ad 1(1) Wentathi
boundary conditions governing ( and Wat

stage that our approach is identical to that of Cotterell and Rice [7], except

that they addressed the problem of a crack open everywhere. Furthermore, they

found their solutions and expressed their expansions in terms of

Muskhelishvili's [10] complex potentials. We prefer to work in terms of fun-

damental quantities, although it is entirely possible that the partially

-U ,, . , -, . - . o . - . o . .- . o . -. . , .- .e , . .. . . . . ' . . , - -., f - , . - . ,,% .., ,



I ii
Art

5

closed, slightly curved crack can also be solved by a variation of the complex

variable treatment of Cotterell and Rice [5].
C."() (1) an (1)

We return now to the question of finding ( and • . In

order to find the equations and boundary conditions governing o ,
1  )

and u(1) , we substitute the expansions (9)-(11) into equations (1)-(4).

We also use the fact that both X(x) and X'(x) are 0() to write

expansions in E for the tractions and displacements on the crack surface y

= (x) . Using a tensorial transformation, we find that the normal and shear

tractions on the actual crack can be written as

ann (x, X ) [aOx(x , X) + y(X, x)] +

+ I [a Cx, X) a Cx, X)]cos2e a (X, X)sin28
2 yy xx -

a x, X) = a Cx, X)cos2e + 1- [ayyCX, X) - O(x, X)]sin2,

where 0 - X'(x) + O(E 3) Then, using a Maclaurin series expansion in 0

for sin2O and cos20 , we find

ann(x, X) = ayy(x, X) - 2X'(x) axy(x, %) + O(E 2)

ans(x, X) - ax(x, X) + X'(x)[a(X, X) - OxxCX, X)] + 0OC2)

If we now write Maclaurin series expansions in y for oxx , yy and Oxy,

the last two equations become

ox, 0)2

ann(X, X) =a (x, 0) - X(x) 50x 2X'(x) a Cx, 0) + 0( 2 ) , (12)

xJ.
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xx(x, 0)

(X, X) - (X, 0) Mx) XX + x'(x)[a (x, 0) -

- ox, 0)] * 0(2) (13)

where we have also used the equilibrium equations baxy/ay =-baxx/bx and

Gyy/ y - - axy/ X

In a similar way we can show that

un(x, X) = uy(X, 0) + X(x) yy(x, 0) - X'(X)ux(X, 0) + 0(e2) * (14)

Using the expansions (9)-(11), equations (12)-(14) can be written as

o(°) (x, 0)ann (x, X) = (O)(x, 0) + )y y (x, 0) - %(x) X -)x

(0y 2yy5

- 2X'(x)a (x, 0) + 0(t
2

(), (15)
xy

o0)"  0
0)~0) x, 0)

ns (X, X) = o0(x, 0) + a(1)(x, 0) - X(x) +nsxy x, xy

+ X'(x)[O 0 )(x, 0) - a(O)(x, 0)] + O(e2  (16)

un(X, X) = u()(x, 0) + u~l)(x, 0) + X(x)t(0)(x, 0) -
y yy

- 0)2 (17)
X'(x)uxO)(x, 0) + 0( 2 )7

Finally, substituting eqns. (9)-(11) and (15)-(16) into the boundary value

problem formulated in Section 3.1 (eqns. (1)-(4)), taking into account (5)-(8)

(1) (1C)
and separating zero and first order terms, we find that ( , (I) and

(I) should be the solution to the following boundary value problem



0 . 0

ji,j

lJ = ui M+ ,I in V' (18)

(1) C (1)
a °ij ike-

with

i" at infinity, (19)

0 0)(x, O) = 0 on the open portions of the crack, (20)
yy

~(l) (1) d [(0)xO~d() ()]
a(l)(xO) = PC(1 (x,O)+X(x) !d [a (x-O)-PO (xO)] -

- X'(x)[(1+2 2)i(0 )(xO)-a(O)(xO)] for lxi < a (21)
yy xx

u(1 )(x, 0+) - u (x' 0-)

-%(x)[E(O)(x,O+)-C(O)(x,O-)]+K'(x)ru(O)(xO +-u(O)(x,O-)] (22)
yy r" x X

on the closed sliding portion of the crack.

3. FORMULAE FOR THE STRESS INTENSITY FACTORS

Following Cotterell and Rice [7], let w be the angle of the crack tip

at x = a , given by w = %'(a) to first order. The normal (a,) and shear

(a.) stresses acting along the prolongation of the crack at a small dis-

tance r from the tip at x - a are obtained by setting X = wr + 0( 3) =

. w(x - a) + 0(r3) into equations (15) and (16). So,

! ' -" ..... ... :.'.v... -," -.' :.':.......................................................................-..... -... .".-.. -'" "%.
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(O)(x, ) (0) (1)

W a( )x0)_W(Xa) xy -2wa (xO)+a (xO)+0(C)w Yy bxXY YT

(0) ba(0)(x, 0)

=( xx (0) 20 ()

Then, the stress intensity factors can be calculated as

i 0) K(') + K11 + 0(. 2) , ('3)
r+0

KI f lira+. (/2-r oa )  U, +'I KI + Ki + (E 2  (23)

r-O

K r 4  (V2itr a K(0) (1) (1) 2 (4

whee (0 )  K (0 )  K(1 )  adK I
where K KI K and are the stress intensity factors for

the zeroth (eqns. (5)-(8)) and first order (eqns. (18)-(22)) problems, and

o(0) (,O

K ) -w1 2n lim+[(x - a)3/ 2  Xx + 2(x - 1/2 a(0) (x, 0)]
X~a

ma(0 (x,) ( a( )
K(1 ) -V2 lim+{(x-a)3/2 xx (x-a) 2 [a(O) (, 0 - (x,o)

II + xx

xa

Using the last two equations and a Williams [111 expansion for the near

crack tip stress field, we can show that

K (1) 3 ()w K) (25)

and K( ) . I K(O)0  (26)

]:Sa=  Z •(6

.2.-* -.
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From the formulation of the first order problem (eqns. (18)-(22)), it is

clear that this can be considered as the superposition of the following two

problems; problem (i) with a prescribed normal displacment and zero shear

traction on the sliding portions of the crack and with the rest of the crack

traction free, and problem (ii) with a prescribed shear traction and zero

normal traction everywhere on the crack face. Thus, knowing the solution of

the zeroth order problem (eqns. (5)-(8)) and having determined the sliding and

open portions of the crack, we can determine K~' )  from the solution of

problem i) mentioned above.

As far as K( ) is concerned, it is obvious that only the prescribed

shear tractions at the crack surface of problem (ii) mentioned above that have

opposite directions on the upper and lower surfaces of the crack have a non-

zero contribution to KM With the definition
II

(x) ffi - [A(x, 0 ) + A(x, 0)]

K(M )  is known (e.g., [121) to beII

a

K1 ) _ _J - J (x) a + X dx (27)Z I= -axy a-=x '

/An-T -a

where, according to (21),

WC 0 x) x -W0 Cx) WW (x)xy yy dx xx ICY

- '(x)[(l + 2p )4 () -(0)
)a C) -a (x1 .(28)

yy xx

On the other hand, it is possible that the stress field of the zeroth order

(0) 1Lproblem, ( , has the characteristic - elastic singularity at several

.. . . .
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points in the interval xI 4 a ; since derivatives of y(0) with respect

to x are involved in the formula for am (eqn. (28)), non-integrable
xy

singularities will appear in eqn. (27). To overcome this difficulty, we

assume, for the moment, that the stress components i( (x, 0) are all

bounded and differentiable with respect to x in the interval lxi ( a ; this

makes o(1)(x, 0) also bounded on the crack face. In the case wherexy

a(0)x, 0) are singular at some point in the interval lxi ( a , the singu-
o(0),

larities are removed by replacing ij (x, 0) by bounded functions that

reduce continuously to zero (or any other value that makes (0)(x, 0)

continuous) over distances closer than a small distance 6 to the point where

the singularities appear. Later it is shown that it is possible to let 6

tend to zero, i.e., effectively to remove the restriction of bounded and

differentiable a (0)(x, 0)
ij

We return now to the calculation of K With the above continuity

assumptions on C) we can integrate by parts eqn. (28) to find

K(1) - -a '_ - x'[( + 2p2 )--y) - -<0)] +I I = a-a YYy x

+ [-X' + I (0(a) -0)} a + x dx - (29)
2 X(] - Y a - x

La

I fa (0)- _(0) 1 aX + (a - x)'(a) , a - x dx

-a [a -0 xy V(a) - (a- X)a a + x

It should be noted that ak(x) + (a-x)k'(a) ,- [a(x) + (a-x)'(a)] 0
dx

at x - a , so there is no divergence at the upper limit of the second inte-

gral in (29). It can also be seen that an integrable singularity can exist in

-(0)a Cij(x) , provided it is not at x - +a , as was also noted in (7]. Specifi-

cally, in terms of our earlier discussion, 6 can be shrunk to zero and in



II
that limit, the result of equation (29) for K.I approaches the result

-(0)obtained by inserting directly into (29) the singular, actual a (x) . Such

considerations, based essentially on the fact that the final result of equa-

tion (29) for K I  contains a - x) only (and not derivatives with respect

to x), allow us to conclude that (29) is valid for all integrable 0)( x)

(i.e., not necessarily bounded or continuous).

We mention again that part of the solution to our problem is the finding

of the sliding portions of the crack. Having found the sliding portions of

the crack and the solution of the zeroth order problem, we can proceed to

solve the first order problem and use the formulae given in this section to

find the first order correction to the stress intensity factors.

4. THE PROBLEM OF THE KINKED CRACK

A particular case of the curved crack is the kinked crack shown in Fig.

2. The shape of the kinked crack is given by

mb (x + a) for -a 4 x 4 -b

(x) mx for lxi 4 b

mb_-a (x - a) for b 4 x 4 ab9 -- a

In this case, w = X'(a) + 0(c 3 ) mb -+ 0(C3

b-ab

Following our previous discussion, we assume that both m and mb
b - a

are 0(E) , which is equivalent to assuming that X'(x) is 0() . We

mention again that we are concerned with the case where both a yy and axy

are negative and so, it can be assumed that the portion of the crack in the

interval lxi 4 b remains closed during the application of the load. Thus,
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the sliding portion of the crack is the interval lxi 4 b and the open por-

tions are the intervals b 4 lxI < a . Of course, there is a possibility that

the applied stresses aii and the orientation of the kinked crack are such

that the whole crack remains closed and does not slide. To check whether this

happens, we can solve the problem assuming that the crack opens in the inter-

val b l 1xi < a ; if the calculated KI  at the tips of the kinks is

negative, the tip of the kinks remain closed and the assumption that the crack

opens in the whole intervals b < lxi 4 a is in error.

4.1 Solution of the zeroth order problem

The zeroth order problem can be considered as the superposition of the

four problems shown in Fig. 3, where F(x) is the distribution of the

a(0)(x, 0) stress component of problem no. 1. We note that for problem no. 4
YY

the shear stress on the crack face, a(0)(x, 0) = 4F(x) , opposes the relative
xy

sliding of the crack faces. The quantities of interest for each of the four

problems mentioned above are given in the following. In the solutions pre-

sented in the rest of this section, conditions of plane strain are assumed; in
V

order to get the plane stress solutions we simply replace V by 1 +

4.1.1 Problem no. 1

The solution to this problem has been given by Erdogan [5] and is as

follows

a(0) (x, 0) = a [a2 E(k) 2] = F(x) (30)
(b 2  - x 2)(a 2  _x 2)

C(O)(x, 0) = F(x) - a

xx Yv

a(O)(x, 0) = 0
xy

" < . . ..,.. ... " . ........................ : .. . . ..... ., , .. . .. ,
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u(0)(x, 0+ ) =u(0)(x, 0-),
x x

E ()(x, 0+ ) = (O)(x, 0-) for lxi < b
yy yy

and

(x, 0) = -- for b < lxi < a

where K(k) and E(k) are the complete elliptic integrals of the first and

second kind respectively and k = /I - b ./a

Also, the stress intensity factors for this problem are

K0) YY na E(k) I

I k - J

and K(0 ) = 0ad II "

Problem no. 2 consists of a plane strain tension. The solution to this

"1em is quite obvious; therefore we proceed to problem no. 3.

4.1.2 Problem no. 3

The solution to this problem is known (e.g., [12]) to be

(0) (a 2x
xx xy20,~ x, ~ X~ va 2

-

(0) * (0)(0)x, 0 ) = a(0)x, 0 ) = 0,
yy xy



000

~(X)

S4

Figure 1
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Fig. 1. Infinite plate containing a curved crack.

Fig. 2. Infinite plate containing a kinked crack.

Fig. 3. Superposition used in the solution of the zeroth order problem.

Fig. 4. Superposition used in the solution of the first order problem.

Fig. 5. Infinite plate containing a kinked crack orinted at 360 to the

overall compression.

Fig. 6. Stress intensity factor at the tips of the kinked crack shown in Fig.

5 (p= 0.3).
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Finall.y, using eqns. (46), (47) and (51) we find the stress intensity factor

to be

K1  -(a -i 0 ) V-n m k 3- (2 -v)k 
2 + (10 2v + 20~k + v

lYyyv 2k 2
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b C

2G 1 f dh X(x) dx + 0O'(z) = '(z) - 1(K 1) X(z- b jdxX x - z XT , (52)

where h(x) is the function determining the shape of the wedge of length 2b

(see Fig. 4), X(z) = (a2 - z 2)(b 2 - z ) and the constant Co  is determined

from the equation

1 a 1b d _/(a _t 2)(b2 _t 2) - ]dx -

b /(2 2 b2 ) -b dt t -x

K + 1 K(k) C= -h(b)
2G a o

As discussed in Section 4.2, the shape of the wedge for our problem is

given by

0 ~ I 1-)a2  2

h(x) = m G , x < b (53)
)a2 _ x2

Substituting (53) into (52) and carrying out the integrations, we find

00cm2 a - to

4 ()= Qt(z) = - ma( -y y)

2 2 2 2a

-~ 2_a 2)(z 2-_b 2

where

C -K(k)k 3 + M( + 2v)K(k) -2E(k)]k + 2v +

v K(k ab-- 2k

+ v fa xx b2  aa b2  dx
b a -x /(a 2 _ x 2)(x 2 b b2
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For a prescribed shear traction a (x, 0) along the crack face, it isxy

known (e.g., [12]) that

V(z)= '(z) f - _ _y(X, 0) Va xd-dx (49)
2i z2 -a 2 -a xy x-z

In our problem

4F(x) for lxi < b
axy(x, 0) = (50)0 for b < x<a,

where F(x) is defined in eqn. (30). Substituting (49) into (50) and

carrying out the integration we find

-(Z) ='(z) ila 0{[z 2 _ a2 E(k)i 1 z
2'(. =y K (k 2--2 2 2 2 2

V(z - a2)(z -b) Vz _ a

Finally, using eqns. (46)-(48) and the definition

KI + iKll = lim+ V2n(x - a) [a yy(x, 0) + ia xy(X, 0)] (51)
x~a

we find the results shown in Section 4.1.3.

APPENDIX 2

The solution to the problem of the opening of a finite crack by a rigid

wedge has been given by Markuzon [14]. In terms of Muskhelishuili's [10]

complex potentials, the solution is shown to be
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APPENDIX I

The problem no. 4 in Fig. 3 is formulated in terms of the complex

potentials *and 4'of Muskhelishvili [10]. The stresses and displacements

can be expressed as

a + a -2[0'(z) + *'(z)] (43)
xx yy

a -y a xx+ 21a -y 2[zO"(z) + 41(z)] ,(44)

2G(u + iu ) OW(z - z4o'(z) - 4'z) ,(45)x y

where K 3 - 4v for plane strain and K (3 -v)/(1 + v) for plane

stress, the overbar denotes the complex conjugate and prime stands for

3differentiation with respect to z -x + i

Introducing the analytic function

* 0(Z) -zo'(z) + q'(Z)

eqns. (43)-(45) can be written as

a + a 2[*'(z) + 0'(z)J (46)
xx yy

a -a + 21a -2[(z- z)O"(z) -0(z) 0O'(z)) (47)
yy xx xy

2G(u + iu ) c(Z) -(Z -Z) *'(Z) -0(Z) .(48)
x y

*~ V **%'~ ~ v*~. k
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be valid, depend on both 1/c and 0 . But, roughly speaking, the asymptotic

solution is seen to be accurate for values of 9 up to about 20. Unfortu-

nately, the values of K11  for small values of 9 are not given in Ref. [3];

so, comparisons of the asymptotic result for KII with the exact solution

were not possible.

6. CLOSURE

A first order solution has been obtained for the stress intensity factors

at the tips of the kinked extension of a sliding crack. The validity of the

asymptotic solution is limited to kinked cracks with small deviations from

straightness. There are several situations where this deviation is indeed

small. As an example, consider the case of a glass plate or a rock block con-

. taining several small cracks at different orientations. Under the application

of a compressive load, the cracks with an angle to the direction of compres-

sion, y , greater than Y M tan - will remain closed and only those

with y < yc can, possibly, slide and propagate. It is also known ([1J-[4J)

that these cracks tend to propagate towards the direction of compression. So,

if the coefficient of friction, 9 , is very high (which makes Yc small) the

crack propagation will create kinked cracks with small deviations from

straightness. For situations like these, the asymptotic results can be used

to determine the stress intensity factors and to make predictions for the

direction of further propagation. In addition, fatigue due to non-

proportional loads can cause the development of cracks that are not straight

and are partially closed, although open at the tip. For cases where the

deviation from the straight line is small, the methods devised here can be

used, although a criterion for determining where the closed portions lie would

have to be developed.

''S

"" °', " % % % , •- " .' ". "- • N 2 
' "

° '% ' S ' S 'S"'.*-' ' ''-h'-".. . . . . . . . -- ' .' -... '
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K -K(O) +-1 w (0)+v(')+ c 2

(0) (0 (1 0)+) +(1),

where K O  K( , K and are given in equations (38), (39),

(41) and (42) respectively. Equations (41) and (42) show that KM and

KM ) depend on Poisson's ratio v . This means that they have different
II

values under plane strain or plane stress conditions. On the other hand, it

is known that, in the absence of body forces, the stress intensity factors for

traction boundary value problems are the same under plane strain or plane

stress conditions and independent of the elastic constants. The reason that

V enters the expressions of the asymptotic solution for the stress intensity

factors is that the displacement field of the zeroth order problem, which

depends on V , was used to formulate the first order problem. As a result,

the in-plane c6mponents of the first order correction to the stress field and

the corresponding corrections to the stress intensity factors depend on v

(1) (1)However, numerical calculations of K 1) and K 1 show that their depen-

dence on v is very weak and that their values for plane strain and plane

stress conditions are practically indistinguishable, which validates the first

order correction.

Next, we apply our results to the problem of a infinite plate containing

a kinked crack oriented at 36* to the overall compression (Fig. 5). The exact

solution, given in Ref. [3], and the asymptotic results for KI  are plotted

in Fig. 6 versus the angle between the straight crack and its out-of-plane

kinks, e , for several values of the ratio of the length of the kink, A , to

the length of the straight crack, c . In general, the region of accuracy of

p -the asymptotic solution depends on both A/c and 0 , because the values of

m and w in our analysis, which must be small for the asymptotic solution to

* ..- , *

*..

' - * * *
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S-where

3
= I -K(k)k + [(1 + 2v)K(k) - 2E(k)]k + 2v

C _Kk 27 +

S2 2 2 2""+ va fx/x 2  b 2  _~ b 2  d

b a 2 x 2 (a2 x2)(x2 b2)

We proceed now to the calculation of the mode II stress intensity factor

for the first order problem, K , which can be determined either by solving

problem no. 2 in Fig. 4 or, equivalently, using eqn. (29). We note that

C-O) (x) ayy) (x) and -0) (x) all have the characteristic singularity__,-"xx ' yy xy

at x = *b ; but as discussed in Section 3, eqn. (29) for KM can still be
|-I

used, provided that the singularities are integrable, which is indeed the

case. So, using the solution of the zeroth order problem derived in the pre-

vious section and applying eqn. (29), after some lengthy, but straightforward,

integrations we find

K jK1  + (a a )V1% mb 2a- si- + 2 W Vna +I)yy I) b a bb a yy

yy,2k 2 E(k) I 2  E(k)... + 11 -_5 + (I+ %i )} , 4,

where K is given in eqn. (40).

5. DISCUSSION AND COMPARISON WITH THE EXACT SOLUTION

The obtained asymptotic solution for the stress intensity factors at the

tips of a kinked crack is of the form

K 0)-°  3 (0) (1) 2
KI KI - w K i + K I +0(C)

-S I

0', ...- 1 .'.- .' ...." " . - .... .". . ''''. ."... ., -'..' . , .",'. -", > :,.'".-;? .- ,:, , '' '"",',,
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(0). O (x) o) W 0 (37)yy xy

for b < lxi< a.

Also, the stress intensity factors for the zeroth order problem are given

by

(0) aYY E)
K I k 11 °  (38)

(O y •i * 'a + IK O 
(39)

XY YyI

*4.2 Stress intensity factors for the first order problem

As discussed in Section 3, the first order problem can be considered to

be the superposition of the two problems shown in Fig. 4.

The mode I stress intensity factor K 1 1  is determined by solving

problem no. I in Fig. 4, which is actually the problem of the opening of a

finite crack by a rigid wedge. The general solution to this problem has been

given by Markuzon [14]. Taking into account eqn. (22) and the solution of the

zeroth order problem derived in the previous section, we find that, for our

particular case, the shape of the wedge, h(x) , is given by

":.~~ 

~ ~ 0 ®y y (~2_x2

2h(x) (xO)-u (x,) = 2m xy Y (l-v)a x IxI 4 b (40)y y G 2 2
/a _ x

Using the above formula for the shape of the wedge and Markuzon's [14]

solution, we find the mode I stress intensity factor to be (see Appendix 2)

(1.K ) = -( )3 I 2 k2 ,(

m k -(2 -v)k 2 + (I -2v + 2C)k+ v
Y K Y Y T lv 2k 2  (41)

,-, ~ ~ ~ ~~~~~ .. .. . .... .. . , L .-- : . ...:. . .. - : -
- .: . . .- . . -. . . . . .. .

4 

,.
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(0 )  2 [x2  2 (k) x
(x -b)(a -x) Va - x

for b < 1xI < a

Also,

K(0) =0 ,

K(O) pa a [I k -(k) ]
II k K(k)

4.1.4 Superposition

Superimposing the solutions of the four problems shown in Fig. 3, we find

the quantities of interest of the solution to the zeroth order problem to be

O4) (x) fiF(x) - a c + a ,o (31)
=,xx yy xx

*'. -(0) (2
-"=F(x) (32)
yy

-(O)(x) = iF(x) (33)"" xy

.(0)(x, 0+ c (0)(x, 0- 2v x (34)

yy yy G 2

Va 2." x 2

(0) + ( 2) 2
u (x, 0) - u() (x, 0-) = 2( - v) ,.s2 - x (35)x x G

for lxI < b ; and

a(x) = -0 + ' (36)
xx yy xx

. . .
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(0) a
yy x2-"/a 2  2

(x 2y 2i. .- and u ()x, 0: )  ffi V:( -y v)a 2  x for I ,X

"- -

'"'-'"where G is the shear modulus of the material.

"' "" In additon,uL

a(0)(,0= F)

an KO) ;0 , -

*x yy G a-x

00) Cx, Q) 0 1-v .2 aY o x

u, T and .T

,I ,

2. 2

[-. (0 x, O) TO V) fox
['.. yy

[.'...

i o(O(x, ) = p~x)%
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